Architecture of Standard-based, Interoperable and Extensible IoT Platform

Slavko Žitnik, Marko Janković, Klemen Petrovčič and Marko Bajec

University of Ljubljana Faculty for computer and information science

23 November 2016

Slavko Žitnik et al. (FRI)

Internet of Things

23 November 2016 1 / 17

Agenda

Introduction into IoT

- IoT Platforms Landscape
 IoT Platform Architectures
 - Reviewed Platforms
- 3 IoT Standardization
- The Proposed Platform
 oneM2M & OM2M Platform
 - Prerequisites
 - Reference Implementation

3

Introduction into IoT

- Kevin Ashton (1999)
- Number of Internet-connected devices enormously increasing
- Gartner: 21 billion devices by 2020
- Conventional device usage with "smart" mechanisms will be taken for granted
- A whole new technology ecosystem with its own problems
 - Security
 - Data and analytics complexity
 - Standardization
 - Pollution
- Technology advances in hardware and software

IoT Platforms: Apples vs. Oranges

- Different platforms referred to as an IoT Platform
 - Connectivity / M2M platforms
 - Purely connecting IoT devices
 - IaaS backend platforms
 - Optimizing hosting and processing services to support IoT ecosystem
 - Hardware-specific software platforms
 - Proprietary hardware and software components
 - Consumer/Enterprise software extensions
 - Enterprise packages (middleware) and operating systems

Slavko Žitnik et al. (FRI)

Internet of Things

23 November 2016 4 / 17

A Modern End-to-end IoT Platform Architecture

Slavko Žitnik et al. (FRI)

Internet of Things

23 November 2016 5 / 17

IoT Platforms Ecosystem

- Commercial platforms
 - Watson (IBM)
 - HANA (SAP)
 - Jasper (Cisco)
 - AWS IoT (Amazon)
 - Azure IoT (Microsoft)
 - HomeKit (Apple)
 - Brillo (Google)
 - IoTivity (Intel)
 - AllJoyn (Qualcomm)
- Open-source platforms

• ...

Slavko Žitnik et al. (FRI)

Internet of Things

23 November 2016 6 / 17

IoT Platforms Ecosystem

- Open-source platforms
 - Domoticz
 - Z-Wave, RF, PUSH, IFTTT
 - Definition of custom scripts.
 - Kaa
 - Bluetooth, ZigBee, Z-Wave
 - Its own SDK with analytics integrations.
 - HomeAssistant
 - Bluetooth, Z-Wave, PUSH, IFTTT, Media
 - Developer API.
 - OpenHAB
 - Bluetooth, Z-Wave, ZigBee, WiFi, etc.
 - Modular OSGi framework with GUI and rules definition.
 - OM2M
 - CoAP and HTTP by default.
 - Modular OSGi framework with admin following oneM2M standard.

Slavko Žitnik et al. (FRI)

3

Sac

IoT Standards Initiatives

- Thread Group
 - Wireless-centric standard addressing networking, power conservation, security and product compatibility.
 - Devices default to IPv6 within IP-based mesh network.
 - Samsung, Philips and more than 80 partners.
- AllSeen Alliance/AllJoyn
 - Framework for connectivity and service layer operations.
 - Goal to discover, connect and interact among IoT devices regardless of transport layer, device type, platform or OS.
 - Qualcomm, Microsoft, Sony, Lowe and more then 170 partners.
- Open Interconnect Consortium/IoTivity
 - Will deliver an open source reference implementation of the Open Connectivity Foundation (RAML descriptions) standard specifications.
 - Cooperates with DLNA and UPnP Forum.
 - Group with more than 100 members as an Intel's alternative to Qualcomm's AllJoyn.

Slavko Žitnik et al. (FRI)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

IoT Standards Initiatives

- Industrial Internet Consortium
 - Not developing standards but is to "bring together the organizations and technologies necessary to accelerate growth of the Industrial Internet by identifying, assembling, and promoting best practices."
 - Mainly backed by GE, IBM, Cisco, AT&T and Intel.
- IEEE P2413
 - An umbrella project for more than 350 IoT-related IEEE standards. Goal is to build a reference architecture along with all building blocks.
 - At early stage but building liaisons with IIC and oneM2M.
- oneM2M
 - A standard for common service platform that defines architectural blocks, standardized messages and a Semantic Web schema for further automatic interconnection.
 - Actively developed by standard organizations (TTA, ETSI, TIA, ATIS, TTC, ARIB, CCSA and TDSI).

Slavko Žitnik et al. (FRI)

IoT Standards and Protocols

Different levels of protocols

- Infrastructure (6LowPAN, IPv4/IPv6, RPL)
- Identification (EPC, uCode, IPv6, URIs)
- Comms / Transport (Wifi, BT, LPWAN)
- Device Management (TR-069, OMA-DM)
- Discovery (Physical Web, mDNS, DNS-SD)
- Data Protocols (MQTT, CoAP, AMQP, Websocket)
- Semantic (JSON-LD, Web Thing Model)
- Multi-layer Frameworks (Alljoyn, IoTivity, Weave, Homekit)

イロト 不得 トイヨト イヨト 二日

oneM2M & OM2M Platform

- Standard-based, interoperable and extensible IoT framework ?
 - oneM2M
 - IoT standard
 - Definition of standard architectural blocks with messages
 - Used in various companies and large-scale IoT projects (e.g. Busan Smart City)
 - OM2M
 - Extensible reference implementation of oneM2M
 - KNU Open Health Platform
 - Sensinov Global IoT Platform

oneM2M & OM2M Platform

• Since 2013

• First official release v1.0 (2016)

Slavko Žitnik et al. (FRI)

Internet of Things

23 November 2016 12 / 17

3

590

The Proposed Platform oneM2M & OM2M Platform

oneM2M & OM2M Platform

Slavko Žitnik et al. (FRI)

Internet of Things

23 November 2016 13 / 17

3

Sac

Prerequisites

Our Framework Prerequisites

- OM2M: admin interface, data representation, device registration and discovery, device and group management, security and notifications.
- oneM2M: interconnection with OIC and AllJoyn along with base ontology. Eclipse Vorto already defines information metamodels, code generators and model repository.
- Goal: use of a standardized definition of application-level messages regardless of physical protocol.

Slavko Žitnik et al. (FRI)

< □ > < 同 >

Reference implementation

- Added practical functionalities: arbitrary (No-/SQL) database support, CEP (EsperTech), 3rd party subscriptions and notifications (PUSH), automatic sensor discovery.
- IPUs: CoAP (standardized), MQTT, Z-Wave, ZigBee, Bluetooth.

Slavko Žitnik et al. (FRI)

Conclusions & Further Directions

- The proof of how to use theoretical IoT models and standards for generally useful and really interconnected internet of platforms.
- Learn from history and act accordingly!
 - OSI/TCP-IP
 - Semantic Web
 - e-mail
- The prototype along with module implementations and other IoT experiments available at http://iot.data-lab.si/.

Slavko Žitnik et al. (FRI)

Internet of Things

23 November 2016 16 / 17

The Proposed Platform Reference Implementation

Thanks!

Slavko Žitnik et al. (FRI)

Internet of Things

23 November 2016 17 / 17